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Abstract. The Lie algebra for the maximal contact symmetries of third-order ordinary 
differential equations (ODES) is examined for type I and I1 hidden symmetries where- the analysis 
of hidden symmetries for point sy"e(ries is extended ta contact symmetries. ODES invariant 
under the group associated with the ten-dimensional (maximal) Lie algebra may produce type I 
hidden symmetries for two-parameter subgroups and type I1 hidden symmetries for certain 
solvable non-Abelian three-parameter subgroups in the Ihird-order ODES when they are reduced 
in order A new class of type I1 hidden symmetries is recognized in which contact symmetries 
uansform to point symmetries in some reduction paths. Two examples of ODES hvariant under 
subgroups of the ten-parameter group under which yJ" = 0 is invariant demonstrate the new 
class of type I1 hidden symmetries. 

1. Introduction 

Hidden symmetries of ordinary differential equations have recently been introduced [14] 
and analysed for various physical and mathematical equations [5-16]. These are symmetries 
not found by the Lie classical method for point symmetries of differential equations [l, 17- 
201. Type I @) hidden symmetries of ordinary differential equations (ODES) have been 
defined as point symmetries that are lost (are gained) when the order of the ODE is reduced by 
the invariants of a Lie group symmetry. Hidden symmehies of partial differential equations 
(PDES) also exist but are not discussed here [10,21]. The invariants of symmetries of ODES 
have been found from the characteristic equations of the local @oint) group generators but 
invariants have also been found from exponential non-local group generators [6,9,11,16]. 
For ODES these invariants are usually called differential invariants but the two lowest order 
invariants are the path curve, a function of the independent and dependent variable, and the 
first differential invariant, a function of the independent variable; the dependent variable 
hnd~the derivative of the dependent variable with respect to the independent variable. 

'. me inves'tigations of hidden symmetries have focused on the reduction of order of 
ODES by additional and longer reduction paths and  on^ understanding the origin of these 
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hidden symmetries. A motivation for studying these hidden symmetries arose from the 
nonlinear characteristic equations of the Vlasov equation for plasmas for which additional 
solutions would be advantageous [221. The existence of type I hidden symmehies allows 
the increase in the order of an ODE to a new ODE of one higher order which has more 
than one additional point symmetry. This ad hoc approach requires guessing the variable 
transformation. In a more systematic approach an ODE can  be reduced in order by non- 
normal subgroup invariants such that one or more point symmetries of the ODE are lost in 
addition to the symmeby used in the reduction of the ODE. The lower-order reduced ODE 
has a type I hidden symmetry and tables can be prepared of these ODES [2,4]. From the 
tables the order of the ODES in the table can be increased to the higher-order ODE with 
the additional symmetries. For both the ad hoc and systematic methods an ODE can be 
reduced in order more than would be expected by the point symmetries determined by the 
Lie classical method. Type II hidden symmetries also extend the reduction path to an ODE 
of lower-order than expected by the symmetries determined of the original ODE by the Lie 
classical method since one or more symmetries are gained when the order of this ODE is 
reduced. 

The origin of type I hidden symmetries is known. These arise if the order of an ODE 
is reduced by the invariants of a non-normal subgroup.. The existence of a non-normal 
subgroup can be identified from the commutation relations of the Lie algebra of the group 
generators which represent the symmetry under which the ODE is invariant [l, 191. A normal 
subgroup has the infinitesimal (group) generator Ut which satisfies the commutator 

[Ui, u j ]  = c h u k  (1) 

for j # i where either k = i or Ct. = 0. If j # i, k # i and C$ # 0, the point symmetries 
of CJj vanish when the order of the ODE is reduced by the non-normal subgroup invariants 
(path curve and first differential invariant) of Vi. 

The origin of type I1 hidden symmetries has until recently been obscure. One class 
of type II hidden symmetries arises when a third-order ODE, invariant under a solvable, 
non-Abelian three-parameter Lie group with at least one commutator that involves the three 
group generators, is reduced in order by the appropriate non-normal subgroup invariants 
[9,14]. The two distinct Lie algebras are: 

Case 1 

[uj,uj]= c $ f / k  [ ~ j , L / x ] = c ~ k u j  [ ( Ik .u i ]=o  (2)  

[vi, uj] = Ckuk [uj, U,] = c f k u k  [ u k ,  uj] = o  (3) 

Case 2 

where the repeated indices do not indicate summation. The generator basis of case 2 may be 
modified such that two commutators are zero. It is assumed that the order of the third-order 
ODE is reduced by the invariants of Ui and that the order of the second-order ODE is reduced 
by the invariants of Gk (the reduced form of u k )  for these two cases. Then ch is always 
non-zero but Cjk or Cfk may be zero. The reduction of the third-order ODE transforms Uj 
to a linear non-local group generator and to a local group generator. This has been 
shown by assuming the normal forms for & and [14] and by solving for the general 
form of U,. The reduction of the second-order ODE by the invariants of the reduced form 
of transforms the reduced form of V j  to a local group generator. For case 1 we could 
just as well reduce the order of the third-order ODE by u k .  For Case 2 reduction by u k  

first gives only local group generators in the subsequent reductions. Reduction by Uj first 
gives non-local group generators in both cases for Cli and (Ik if both structure constants are 
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non-zero. We note that, if both structure constants are non-zero in case 1, that there is no 
path that has local group generators in all reductions, but the group is nevertheless solvable. 

Solvable structures have been applied to type U hidden symmetries [X, 121 that appeared 
in two examples [1,3] of second-order ODES. The solvable structures approach in these 
references substitutes a linear operator for the second-order ODE as has been done in an 
alternate approach to  symmetry analysis of ODES [19,23]. In addition to the point group 
generator, that represents the symmetries of this ODE, it introduces a group generator of 
the reduced ODE which reveals the existence of the hidden symmetry. The PDE for the 
coordinate function of  this latter group generator is the determining equation found by 
applying the Lie classical method to the first-order ODE. The difficulties usually associated 
with solving this determining equation for the invariance of a first-order ODE are avoided 
by the choice of a single coordinate function. More general forms of the group generator 
of the first-order ODE that represent the type 11 hidden symmetry are possible but can be 
difficult to calculate. Type I1 hidden symmetries are not analysed by the method of solvable 
structures in this paper. 

Third-order ODES and contact symmetries are discussed in section 2. The commutation 
table of the Lie algebra for a y”’ = 0 found previously [15] is given in section 3 and 
the reduction of ODES by use of these tables is discussed.. A new class~of type 11 hidden 
symmetries is identified in section 3. In section 4 a second-order ODE with the new type I1 
hidden symmetry is analysed. In section 5 a third-order ODE which has two classes of 
type II hidden symmetries is analysed. Section 6 presents the conclusions. 

2. Third-order ODES and contact symmetries 

Contact transformations are transformations in which the transformed variables 2, j ,  and 7 
are functions of the original variables x ,  y and y’ [19]. The infinitesimal transformation is 
represented by the group generator which has the form 

where 

These relations are explained by Stephani I191 and in other references. Customarily the two 
conditions in equation (5) are then replaced by the coordinate functions defined in terms of 
a characteristic (generating) function Q ( x ,  y ,  y‘) which are 

If the coordinate functions Cj and qj, depend on x and y only, the contact symmetries are 
identical to point symmetries. To differentiate between contact symmetries that are identical 
with point symmetries and those that are not we define a contact symmetry where at least 
one of ej and qj depends on y’ as an intrinsic contact symmetry. 

Computing the contact symmetries for an ODE by a direct method is done in principle 
in the same fashion as for the Lie classical method for point symmetries. The contact 
symmetries for first-order ODES are essentially the same as point symmetries but for second- 
order ODES there are, in principle, an infinite number of contact symmetries where the 
determining equation is a single PDE in x, y and y’. This single PDE is even more complicated 
to solve than the single determining equation for point symmetries of a first-order ODE. The 
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determining equation for a third-order ODE does separate into a set of differential equations. 
The method employed here for finding the contact symmetries of a third-order ODE avoids 
the introduction of the generating function nj(x, y. y') and uses the symbolic program LIE 
[24]. The third-order ODE is replaced by three lower-order ODEs where y' is replaced by a 
third variable, U. The point symmetries which are determined by LIE for this set of ODES are 
the contact symmetries. All contact and generalized symmetries may be found in principle 
if the hiid-order ODE is replaced by three first-order ODES [l] but finding the symmetries of 
a set of first-order ODES is not simple. Usually an ansatz of the dependence ofthe coordinate 
functions on the variables must be made [251. For contact symmetries of a third-order ODE 

6 y"' = f ( x ,  Y ,  y', Y") 

we let U = y' such that 

U') = f ( x ,  y ,  U ,  U') 
U = y' 
U' = y" 

where the prime denotes differentiation with respect to x and equation (Sc) is necessary so 
that the computer program does not treat U' and p" as independent variables. The coordinate 
functions as found by the symbolic program LIE for the point symmetries of equations ( 8 4 -  
(Sc) are now functions of (x, y ,  U). These coordinate functions can be expressed as functions 
of (x.  y. y') for the contact symmetries of the original third-order ODE (7). 

3. Lie algebra of contact symmetries for third-order ODES 

The commutation tables for two third-order ODEs have been reported [15]. The commutation 
table for the ODE 

y!" = 0 (9) 
is given in table 1. The group generators for the ten contact symmetries in different form 
given by Ibragimov [20] are 

a Gq = - 
ax 

a a a 
G9=2(xy'-y)-+xyn-+y"7 

ax ay ay 
a 

ClO = (x2y' - 2xy)- + -x y - 2y 
a a 

G 5 = x - + y -  
ax ay ax (; * 2)$  

The contact symmetries of this Lie algebra sp(4) [15] can be further divided into seven 
point symmetries, G1-G7. and three intrinsic contact symmetries, Cs-Glo, where all point 
symmetries are also contact symmetries. The symmeiries, Gs-Glo, can be verified to be 
intrinsic contact symmetries by finding the characteristic function from equation (6). 
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Table 1. Commutation table for the ten contact symmetries of y"' = 0. 

The Kummer-Schwan equation 
2y'y''' - 3y"* = 0 

is also invariant under the ten-dimensional Lie algebra sp(4)  for the contact symmetries. 
The ten contact symmetries for the Kummer-Schwarz equation further divide into six point 
symmetries, and four intrinsic contact symmetries. The commutation table for the Kummer- 
Schwarz equation has the same form as that in table 1 but the group generators in tabIe 1 
are replaced by other group generators that are given elsewhere [15]. 

The conditions for type I and type Jl hidden symmetries as given for the Lie point 
symmetries apply also to contact symmetries. That can be seen since the contact symmetries 
of the thud-order ODE (7) are point symmetries of the equivalent set of one second-order 
and two first-order ODES in equations ( 8 4 4 8 4  

The reduction of the equation (9) to quadratures can be done by using the symmetries of 
the Abelian subalgebras of G I ,  GI  and G3 or Gs, Gg and Glo in any order. The symmetries 
of the group generators Gq. Gs and G6 cannot be used to reduce equation (9) to quadratures 
since the subgroup represented by these group generators is not solvable. Other reduction 
paths may take various symmetries. Let us examine one, case. Reduce equation (9), y"' = 0, 
by the invariants, U = x ,  U = y'. of G I  to find 

i i = O  - ' ' (12) 

where the overdot denotes differentiation with respect to U. The conditions for the group 
generators of the reduced ODE to become non-local are given in equation (1). In this 
reduction the symmetries of G6, Gg and Glo become non-local. The reduced group 
generators'of Gz, G3, G4, Gg, G7 and Gs are local. In addition we note that the contact 
group generator Gs transforms to a point group generator when reduced. The reduced group 
generators can be found from the relation 

a a 
au 

r5. = Gj(u)- + G ~ ( u ) G  

for j = 2 to 10 where we already~ have the once extended group generators of the point 
symmetries since the group generators in equation (10) represent contact symmetries. The 
reduced group generators in the invariants, U and U, are 

a v, = - 
av 

a v, = u- 
au 
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a v, = 2u- 
au 

a v, = - 
a u  

a v, = u- 
au 

a v, = u- 

KO = (11% - 2 u /  udu); + (U? - 2uJ udu);. 

The third-order ODE (9) has the maximum number of point symmetries which is seven. 
One of those point symmetries is used to reduce the order of the ODE, one point symmetry 
becomes non-local and one contact symmetry becomes a point symmetry which leaves 
six point symmetries of the second-order ODE (12). However Lie [19,23] proved that the 
second-order ODE, U = 0, has eight point symmetries. The other two point symmetries are 
type I1 hidden symmetries, i.e. their origins lie in non-local symmetries of (9). (In the case 
of a non-Cartan symmetry its origin lies in a non-local contact symmetry.) 

The transformation of Gs from an intrinsic contact group generator to a point group 
generator upon the reduction of order of the thud-order'ODE (9) introduces a new class 
of type Il hidden symmetries. The other two contact symmetries as represented by Gg 
and Glo transform to non-local symmetries. The intrinsic contact symmetries all reduce 
to symmetries that are something other than intrinsic contact symmetries. This is expected 
since as y' is the new dependent variable, the coordinate functions of the reduced group 
generators depend on the new variables U and U and possibly the non-local variable x .  
Many examples of intrinsic contact symmetries transforming to point symmetries upon the 
reduction of order of the ODE by symmetry invariants can be found by using the symmetries 
of the group Sp(4). A complete investigation of all the reduction paths that are possible 
of equation (9) with the symmetries of Sp(4) is clearly formidable. Nevertheless, if that 
were done, a number of lower-order ODES with varying number of symmetries could be 
found. The reduction of the Kummer-Schwarz equation proceeds in the same manner. The 
significant result in comparing the symmetries of equations (9) and (1 1) is that the point 
symmetries differ but the Lie algebra of the ten contact symmetries is the same. As a 
consequence the reduction in order by symmetries of these two equations should be similar. 

4. Reduction of ODE invariant under one point and one contact symmetry 

For the first example we consider a second-order ODE that is invariant under one Lie point 
symmetry and one contact symmetry. The group generators are G4 (point) and Gs (contact) 
from equation (10) and they commute. The general form of a second-order ODE invariant 
under the two groups represented by these group generators is 

where g(y') is an arbitrary function of y'. The ODE (15) has a type I1 hidden symmetry 
since the Lie classical method finds only one Lie point symmetry. The other symmeq 
can be verified as an intrinsic contact symmetry by finding the generating function from 
equation (6) for Gg. The reduction is done by the invariants of the point symmetries of Gq 
first although we could do the reduction by Gs first since the two-parameter subgroup is 
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Abelian. The invariants are U = y ,  v = y’. The reduced first-order ODE is 

(16) 
U2 

2u.+ uZg(v) V U  = 

where U = dv/du. The reduced group generator V8 is found to be 

where the contact group generator Ga has been transformed upon reduction to a local 
(point) group generator vg. That occurs since the differential invariants of Gg define new 
coordinates u ( x ,  y )  and v ( x ,  y, y’) such that the derivative y‘ is folded into the dependent 
variable. 

The first-order ODE (16) is invariant under the first prolongation (extension) of &. The 
canonical coordinates calculated from V8 are U and U f v2. In these coordinates the first-order 
ODE is separable. Also the ODE is linear if U is the dependent variable. The result for U is 

Further integration is possible only if equation (18) can be inverted for v in terms of U 
which produces y‘ = h ( y )  from which an implicit function of x is found as an integral. 
Parametric expressions for x and y in terms of integrals (one is double) over the parameter 
v are also possible. 

The significant result of this section is that a second-order ODE invariant under only 
one point symmetry has a new type I1 hidden symmetry that is a contact symmetry. With 
this type II hidden symmetry the second-order ODE reduces to a first-order ODE which has 
an additional point symmetry over that predicted by the Lie classical method for point 
symmetries of the second-order ODE. As a result the second-order ODE can be reduced to 
quadratures or parametric relations for the two variables x and y can be found. The direct 
determination of the contact symmetries of a second-order ODE is difficult since a single 
determining equation, a PDE, is found. However, the realization that contact symmetries 
may be present and can transform to point symmetries in the reduced first-order ODE is 
important. , .  

5. Reduction of ODE invariant under one point and two contact symmetries 

The third-order ODE, invariant under a threeparameter subgroup with a three-dimensional 
subalgebra of the three group generators: G4 (point), Gg (contact) and G9 (contact) in 
equation (lo), has the solved form 

y” R 

Y”’ = jp (5 - 2 Y )  

for g an arbitrary function of its argument.. By the Lie classical method this ODE has 
only one point symmetry, that of Gq. Nevertheless, if.this third-order ODE is reduced 
by the invariants of G4, the resultant second-order ODE has a point symmetry from the 
transformation of the contact symmetry of G8 to a point symmetry of the reduced ODE. We 
know that the reduced form of Gg is local as G4 and Gs commute. On the other hand 
G9 transforms to a non-local group generator since the commutation relations for the three 
group generators are applicable to either case in equations (2) or (3) with CjK or Cjk = 0 
respectively. As the reduced form of G8 is local and the subalgebra of G4, 138 and G9 is 
of the form in equations (2) or (3), then reduction of the second-order ODE to a first-order 
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ODE by the invariants of the reduced G8 gives a local reduced group generator for the twice 
reduced Gg. 

The first reduction of equation (19) is done with the invariants of G4 which are U = y 
and U = y'. The reduced ODE is 

53 U 
u2ij + U L P  = -g (T -,2u). v u  

The reduced group generators are 

where as predicted from the Lie algebra V, and V, are point and linear non-local group 
generators respectively. The second-order ODE is invariant under the second prolongations 
of ,Vs and V9. 

The second reduction is done by the invariants of V8 which are 
1 2u z = u  w = _ - - .  
u t )  

The first-order ODE is 
3dw z - + z2w = -g(zw). dz 

The first extension of V9 is 

The reduced form of V,'" is U,, 

which is now a local group generator as predicted. The first-order ODE is invariant under 
the first prolongation of (19. This example is particularly illuminating since two classes 
of type II hidden symmetries occur: the transformation of a contact symmetry to a point 
symmetry and the transformation of a linear non-local symmetry to a point symmetry. 

A physically motivated equation which fits into the context of the examples considered 
here is found in  the Langevin equation, which describes the non-relativistic one-dimensional 
motion of a panicle in the presence of radiation, given by [26,7] 

d2x ... 
dt2 

m -  = mx = eE -k F-+ m r x  

where z = 2e2/3mc3, m is the mass of the particle, e is its charge, F = F ( x ,  t ) .  a given 
external force and E is the electric field of the radiation. If the external force is linear in 
the displacement, i.e. F =, - -Kx,  [27] shows that the equation 

possesses five Lie point symmetries in general. The Lie algebra of these five symmetries is 
3A1 @ A I  @ A I  [28]. In the case that 2m = -27r2K the number of symmetries increases 
to ten contact symmetries. Consequently the methods of reduction as discussed above can 
be used for (26). The presence or not of the forcing term does not affcct the number of 
symmetries although it does increase the complexity of their expressions. 
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6. Conclusions 

The usefuhess of contact transformations for reducing the order of ODES has been 
demonstrated. The contact transformations have frequently be& dismissed as curiosities 
but they are fundamental in evaluating the symmetries of third-order ODES and reducing the 
order of third-order ODES. The evaluation of the contact symmetries of third-order ODES 
is now especially easy with the realization that the third-order ODE may be replaced by 
an equivalent set of lower-order ODES in the independent variable, the dependent variable 
and the first derivative for which the point symmetries are the contact symmetries of the 
third-order ODE. The advent of symbolic computations of point symmetries adds to the ease 
of determination of the contact symmetries. 

The reduction of order of the third-order ODE, y"' = 0, by a combination of contact 
and point symmetries is similar to that for the reduction of ODES by point symmetries. The 
higher-dimensional Lie algebra (ten-dimensional) for the contact symmetries than for the 
point symmetries (seven-dimensional) offers more possibilities for reduction of the ODE. 
Type I and type Il hidden symmetries as were found in the reduction of ODES by point 
symmetries occur with contact symmetries. The significant new result is the identification 
of a new variety of type I1 hidden symmetry where the contact symmetry transforms to a 
point symmetry upon reduction of order of the ODE. 

Since this new type II hidden symmetry may occur in other third-order and also second- 
order ODES, we have analysed two examples of ODES invariant under a subgroup of the ten- 
parameter Lie group. The second-order ODE is invariant under one point and one contact 
symmetry which has an Abelian Lie algebra. It has the new type Il hidden symmeuy since 
the contact symmetry transforms to a point symmetry upon reduction of the ODE to first 
order by the invariants of the point symmetry. The significance of this example is that 
second-order ODES may possess contact symmetries which transform to point symmetries 
upon reduction of order of the ODE but the existence of the contact symmetries may be 
difficult to detect. 

The third-order ODE is invariant under one point symmetry and two contact symmetries. 
Again the Lie algebra is solvable and the contact symmetries successively transform to 
point symmetries. The third-order ODE has the new type II hidden symmetry which is a 
contact symmetry and the second-order ODE has the type I1 hidden symmetry which is a 
linear non-local symmetry. The latter is a double type I1 hidden symmetry since one contact 
symmetry upon the first reduction becomes a linear non-local symmetry and then transforms 
to a point symmetry upon the second reduction. 
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